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Prefacio

O presente trabalho se complementa com a apresentagiio que o
precedeu € tem como objetivo o estudo, a reunidio e a tradugdo de
metodologias de projeto de mancais aerostéticos.

Ele engloba néo apenas aquilo que esta apresentado nessas folhas,
mas uma longa pesquisa e um vasto estudo baseado em varias
publicacSes de diferentes autores reunindo assim diversos aspectos
apresentados em variadas obras realizadas em diferentes paises e

periodos.
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Introducio

Mancais aerostaticos sdo elementos fundamentais na mecénica de
precisio e vém sendo cada vez mais utilizados especialmente na
fabricagdio de equipamentos de informatica.

Alguns requisitos de alta precisdo de giro , alta velocidade , alta
temperatura ¢ alta rigidez associada com baixissimo atrito sé6 podem ser
satisfeitos com a utilizagfo desse tipo de mancais.

Existem diferentes metodologias utilizadas para o projeto de mancais
aerostaticos , algumas com maior outras com menor precisio em
termos de resultados préticos. Em nosso trabalho caberd atengdo
especial a escola inglesa e a americana.

A primeira apresenta uma metodologia analitica de projeto de
aplicagdio bastante facil, porém seus resultados ainda sdo um pouco
discrepantes com relac@o a dados experimentais.

A segunda (a escola americana) , por sua vez, apresenta resultados
muito bons do ponto de vista experimental , mas , por outro lado , sua
aplicag8o se mostra ainda um pouco complexa devido principalmente a
métodos numéricos de que faz uso.

Nosso trabalho serd realizar um estudo sobre as diferentes

metodologias de projeto de mancais aerostaticos ¢ ainda associar a este



estudo a andlise de algumas técnicas de otimizagdo baseadas nos
estudos de HOLLSTER (1967) e de TANG and GROSS (1962).

Generalidades

Mancais Aerostdticos

Os mancais aerostaticos t€m por principioc de funcionamento a
utilizagdo da viscosidade do fluido que se escoa entre as superficies.

Ea restricdo de escoamento entre a fonte de alimentagdo externa (a
pressdo constante ) e a folga do mancal que proporciona a rigidez da

pelicula de ar , ou seja , se nfo houvesse restricdo do escoamento a
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pressdo no mancal seria constante, conforme mostra a figura abaixo.
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A rigidez de um mancal aerostatico é obtida pela relagfio entre a

carga ¢ a folga do mancal.

A maxima rigidez ocorre aproximadamente a 2/3 da forga maxima e

com essa condigdo , para um dado valor do restritor de escoamento |

temos que a rigidez vem a ser diretamente proporcional & carga e

inversamente proporcional a folga.

Qualquer mudanga no sistema , tanto na pressdo fornecida quanto na

superficie do mancal (geometria) ndio alterard a rigidez a menos que a

carga possa também ser alterada.

Mancais com pré-carga
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Na figura acima vemos , pela ordem , um exemplo do mancal do tipo

"back to back" , um mancal radial e um diagrama carga x folga de um

marncal pré-carregado.

Uma solugdo para aumentar a capacidade de carga de um mancal seria

utilizar um pré-carregamento . Nos mancais do tipo "back to back" ou

nos radiais a rigidez € maior devido ao efeito deste pré-carregamento e

como conseqiiéncia disto cargas maiores podem ser suportadas.



Nos mancais aerostaticos radiais , em que a geometria é a mesma dos
mancais auto-atuantes , a velocidade de operagio influi nas
caracteristicas do mancal conforme pode ser visto através da figura a
seguir.

Da mesma forma que os mancais auto-atuantes (aerodindmicos), os
mancais radiais aerostaticos podem ser instiveis. A seguir temos a
representagdo do comportamento de um rotor em fungdo da velocidade
de rotagéo .

Neste caso , considera-se um rotor rigido apoiado em mancais rigidos e
simétricos .

E importante saber quando ocorrem a ressondncia e a instabilidade
porque ambas estdo relacionadas com a aplicagfo particular para a qual
0 mancal estd projetado . Pode ocorrer um outro tipo de instabilidade
causada pelos rebaixos (bolsas) na superficie do mancal a qual é

chamada de "preumatic hammer".
w r ¢
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A figura mostra a influéncia das forgas auto atuantes (aerodindmicas) na

caracteristica de um mancal aerostdtico



Instobilidade

|

|

|

]

: Ressongncia

R 1 =
-’ Wy w ¢

Jorga constante , presséo da fonte constante

h)  Excentricidade constante , pressdo da fonte constante.

Comportamento de wm rotor em fungio da velocidade de rotagdo

Vantagens do uso de mancais aerosidticos

Os mancais aerostaticos podem ser utilizados quando se deseja:
* Capacidade de carga com velocidade zero:
¢ Alta rotagfo;

¢ Repetibilidade de desempenho;

* Mancais que ndo podem ser contaminados , nem podem contaminar o

ambiente;
¢ (Grande rigidez;
» Temperaturas muito altas ou muito baixas:

* Vida longa , sem manutencéo , a menos do sistema pneumatico.



Aplicacbes de mancais aerostdticos

¢ Baixo Atrito

Mancais de dinamometros;

Dispositivos para medir forga em tuneis de vento;
Guias de instrumentos de mediggo;

Giroscopios.

e Alta Precisdio de Movimento
Metrologia;
Magquinas Ferramentas - mesas e cabegotes;

Usinagem com Diamante.

¢ Baixa Temperatura
Turbinas Criogénicas de Expansio;

Turbo-Compressores.

o Alta Temperatura

Circuladores de gas para reatores nucleares

¢ Maquinas Especiais
Cortadores Opticos:
Medidores de forma;
Caneta Ortopédica;
Broca Dentéria;

Geradores de superficies 6pticas - usinagem com diamante.



» Baixo Nivel de Ruido

motores silenciosos para submarinos,

» Baixo Nivel de Vibragéo

Mancais de Giroscopios.

e Alta Velocidade
Ressonancia Magnética de Rotaco-Fisica;

Centrifugadoras.

¢ Grandes Cargas
Gerador Homopolar - Fisica;

Mesas de Maquinas - Ferramentas.

e Baixo Desgaste
Medidores de Vazdo;
Computadores;

Maquinas Téxteis.

e Alta Pressdo
Turbina a Vapor;

Industria Quimica.

e Radiagdo

Centrais Nucleares.
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Mancais aerostiticos radiais e axiais (M. T.I)

Na figura 5.5.1 vemos um tipico mancal aerostéatico radial com
alimentag¢fo por orificio.

O ar proveniente de um sistema pneumatico passa através da restritor
de orificio acompanhado por uma determinada queda de pressdo e
entdo flui axialmente em dire¢do a atmosfera através do fino filme de ar
existente entre o eixo ¢ 0 mancal, causando assim uma segunda queda
de presséo.

Se o eixo sofrer um deslocamento para baixo no sentido de diminuir
a espessura do filme na parte de baixo do mancal, a resisténcia desse
filme ao fluxo de ar aumentaria. Com isso a pressdo em baixo do
mancal se tornaria maior do que em cima e uma “forca restauradora”
iria ser exercida sobre o eixo.

A intensidade dessa for¢a dividida pelo mencionado deslocamento
do eixo € o que chamamos de rigidez do mancal.

Um dos pardmetros mais importantes essa rigidez ¢ a razio entre a
resisténcia oferecida ao fluxo pelo restritor e a oferecida pelo filme de
ar,

Se a resisténcia do restritor for desprezivel a pressdo em cada um dos
fures de alimentagdo seré sempre igual a presséo ambiente e a rigidez
do mancal também serd nula.

A maxima rigidez serd obtida quando a resisténcia do filme for da
mesma ordem de grandeza que a resisténcia do orificio.

Ha uma grande variedade de possiveis configuracdes para mancais

aerostaticos radiais.
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Ha também alguns tipos diferentes de restritor que podem ser usados
no lugar de simples orificios.

Podemos ter, por exemplo, restritores laminares ou com partes porosas
ou entdo restritores do tipo “ orificio sem rebaixo” nos quais a 4rea
anular variavel ndh na entrada do filme de ar.

Restritores laminares tem a vantagem de atingir niveis de rigidez
maiores sem que para isso seja necessario aumentar o fluxo de ar.

A desvantagem por outro Jado é que eles ndo sdo constituidos por
simples orificios e além disso, para um valor fixo de pressdo a rigidez
por eles oferecido € menor.

Mais importante porém, do que foi dito acima a respeito dos
restritores laminares € o fato de que eles sdo mais susceptiveis a
vibragles auto-excitadas (“pneumatic hammer” ).

Por outro lado, restritores de orificio sem rebaixo oferecem maior
vantagem com respeito a se evitar “pneumatic hammer”. Além disso,
sua segunda vantagem ¢€ a facilidade com que podem ser usinadas. Sua
maior desvantagem, porém, € que a rigidez que se obtém com sua
utilizagfo € cerca de um tergo menor que se pode obter com os
restritores com rebaixo.

Além da variedade de restritores que o projetista pode escolher, ha
também a possibilidade de se optar por um dois planos de admissfo, tal
como mostra a figura 5.5.1. Tal escolha depende do quanto se pode
aumentar a rigidez ¢ a carga suportada pelo mancal em contrapartida &
dificuldade de fabricacdo adicional.

Com respeito a geometria dos rebaixos dos furos de alimentagfo, pode
as usar bolsdes circulares ou rasgos circunferéncias. Estes tlltimos

aparentemente, podem proporcionar cerca de 25% maior capacidade de
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carga do que os primeiros, entretanto sua grande complexidade de
fabricagdo € certamente uma desvantagem.,

Além disso, a fim de se evitar vibragdes auto induzidas (“pneumatic
hammer” ) geralmente faz necessario evitar também o intenso uso de
“recessos de ar” como rebaixos ou rasgos. Devido a esta necessidade
geralmente ndo ¢ possivel aumentar a capacidade de carga dos mancais
aumentando os “recessos de ar” — tal como ocorre com mancais
hidrostaticos. O primeiro papel, portanto, dos furos de admissdo, nos
mancais aerostaticos, ¢ admitir o gas dentro do mancal sem a
ocorréncia em larga escala de efeitos inerciais que poderiam produzir,
por sua vez, o suprimentos de pontos de significante depressio na
distribui¢fo de press&o ao longo do filme de ar.

Por motives de simplicidade e por uma performance ja conhecida
cuja confiabilidade ja é, de certa forma, estabelecida, a confi guracdo
mais comum paras os furos de alimentaciio em mancais aerostaticos ¢ a
que utiliza orificios com ou sem rebaixos. Neste trabalho, portanto,
salvo mengéo em contrario estaremos o tempo todo nos referindo a esse
tipo de furos de alimentagio.

Considera¢Ges analiticas
Geralmente determinar a distribuigdo de pressdo dentro do filme é uma
tarefa ndio muito trivial, principalmente, devido 4 complexidade
geometrica do mancal. Alguns fatos complicam ainda mais a
determinagdo da distribui¢o de pressio dentro do mancal. Entre tais
fatos podemos citar o fluxo bidimensional dentro do filme ¢ a espessura
variavel do filme em um mancal aerostatico radial.

Dessa forma, para se executar o calculo da distribuicéo de pressdes em

um mancal aerostatico algumas simplificagGes se fazem necessarias.
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Um dos modelos analiticos mais simples para tal finalidade é o modelo
axial. Segundo esse modelo o mancal aerostatico radial é dividido em
uma série de canaletas ( ver figura 5.5.2 ) , cada uma das quais sendo
alimentada por um (no caso de um unico plano de admisso) ou por
dois oriticios (n caso de dois planos de admissAo).

As premissas basicas em que esta baseada este tipo de andlise sdo :

L. O fluxo em cada canaleta é considerado exclusivamente axial.

2. Néo ha qualquer interagfo entre os fluxos de canaletas adjacentes,
isto €, todo o fluxo de massa introduzido em uma canaleta por um ou
dois furos de alimentagdo ( dependendo da existéncia de um ou dois
planos de alimentag@o) se mantém dentro da canaleta.

3. Admite se que a pressdo ndo varia circunferencialmente ao longo
da canaleta (0 que, por sua vez, € conseqiiéncia na canaleta).

4. A espessura do filme é admitida como sendo constante em toda a
canaleta e ¢ considerada como sendo igual & espessura do filme ao
longo da linha central da canaleta (figura 5.5.2.).

5. Paramancais com dois planos de admiss#o, a presséio entre dois
orificios de uma mesma canaleta é considerada constante, ou seja, o
fluxo simplesmente se estabelece a partir de cada orificio em diregéo ao
exterior do mancal.

A partir das premissas acima, o célculo da distribuigdio de pressdo em
uma dada canaleta se torna uma tarefa relativamente simples. Se o eixo
se posiciona de maneira excéntrica dentro do mancal entdo a espessura
do filme e a distribui¢dio de pressdo em uma canaleta se torna diferente
do que em outra, sendo maior a pressfio onde menor for a espessura.
Apesar de simples, 0 modelo de fluxo axial apresenta algumas

desvantagens. Desprezar a interagio entre uma canaleta, e outra (ou
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seja, desprezar o fluxo entre canaletas) é pouco razoavel se o mancal
for Tongo ou se a excentricidade for muito grande. Assim também,
algumas simplificagBes a respeito do fluxo dentro de cada canaleta
podem causar significante erro com respeito a pressdo calculada e a real
(figura 5.5.2.).

Apesar de tudo, devido & sua simplicidade, o modelo de fluxo axial
tem formado a base dos mais recentes analises a respeito de mancais
aerostaticos axiais ¢ muitos estudiosos aplicaram e desenvolveram
fatores de correcéio a fim de se levar em conta os efeitos do fluxo
circunferencial.

Uma forma bastante precisa de se analisar a distribui¢io de pressio
em um mancal aerostatico radial é aproximar a admissdo pontual por
furos de alimentag@o por uma linha de alimentaco obtendo se a
distribuigdo de pressdo e o fluxo circunferencial através da
excentricidade e sua perturbacéio
Dessa maneira, assumi se que o fluxo entra no mancal continuamente
através de uma linha de admissfio circular em vez de discretos pontos
de admissio.

Um outro ponto muito importante a ser observado ¢ que muitas vezes a
perda de pressdo nos orificios ¢ superestimada pois apés a passagem do
fluxo por eles, a uma certa parcela de pressdo que é recuperada. Esta
parcela geralmente € calculada com uma descarga do fluxo de ar
diretamente para atmosfera o que nfio acontece nos mancais
aerostaticos ( onde o ar proveniente dos orificios descarrega no filme ).

Selecdo das dimensdes do mancal e uso dos abacos

15



Para se dimensionar os mancais a partir dos abacos sfo necessarios

alguns pardmetros de entrada a partir dos quais conseguimos obter os

adimensionais relativos a rigidez, carga e vazio para os mancais.

1.razdo comprimento - didmetro externo:
& = 1/2 In (Ro/R1i) para mancais axiais
ou
£ = L/D para um tnico plano de admissio
ou

& =L,/D para dois planos de admissdo

razdo comprimento — didmetro interno:
Zero para um Gnico plano de admissdo
ou
L.1/D para dois planos de admissio

2. Razo de pressdes: P, /P,

3. O coeficiente do restritor: A= (6u na® (RT) (P, (1+6%)"2)
(Isto €, a razdo entre a resisténcia do filme de gés e a resisténcia do
orificio de alimentagéo ).

4. A razo de excentricidade: ¢

5. A razéo de volume de alimentagfio : (nVi)/(nDLC)

6.  Para mancais aerostaticos axiais temos ainda o pardmetro
Re=(RoRi)"? onde
Ro=raio externo do mancal

Ri=raio interno do mancal

16



Re= raio da circunferéncia sobre o qual devem estar os furos de
aplicagfo para se obter a mesma vazo de ar para uma dada carga.
Nomenclatura (figura 5.5.1 ¢ 5.5.3)
a raio do orificio no furo de alimentagsio com rebaixo
C espessura do filme
D didmetro do mancat
D diametro do furo de alimentacéo
e excentricidade
L=L,+L, comprimento total do mancal
Li=distancia entre planos de admissdo
L,= comprimento combinado “externamenie” aos planos de admissdo
N niimere total de furos de admisséo ( total de todos planos de
admissdo )
P, pressdo ambiente (psia)
P= presséo da fonte (psia)
R constante dos gases (in’)/(sec °R)
T temperatura total
Vi volume de um tnico furo de admissio in®
0 razdo entre a 4rea do orificio e a area anular em torno do orificio (na
entrada do filme )=
(ra’)/ (Cdm)= a®/(Cd)
u viscosidade do gas (reyn= Ibs. Sec/in*
Nota na maioria das publicagdes a constante dos gases R ndo é dada
nas unidades especificadas acima. Temos, portanto, dois fatores de

conversao:;

4632.8(R1 (ft.1bs)/(Ibs.R))

17



R, in*/(sec? R)= ou
3.6051 . 10° (R1 (Btu)/(1bs.°R))

Adimensional de carga W = W/(rR,%) (Ps-P,)

Adimensional de rigidez K = ((1+ 8%)/(1+2/38%) K/((1/C)n( R -
R:2) (Ps-P,))

Adimensional da vazdo

em massa G=(6 LR T Gyn C’ps?)

Adimensional de coeficiente
de amortecimento B = B/(uRo (Ro/C)%)

Adimensional de rigidez
angular Ka = ((1+ 8)/(142/38%) Ka/(1/C)m R (RS2 - R
(Ps-P.))

Adimensional

de amortecimento B = Ba/(uRo’ (Ro/C)%)

Para a selego das dimensdes do mancal deve se a principio ja se

possuir os valores iniciais do carregamento w e do didmetro D do eixo.

18



A partir dai utiliza se a relagfo abaixo para se estimar os valores da

pressdo de alimentagdo (Ps) e do comprimento L;

0,20 para um dinico plano de admissio
W/((ps-pa) LD)~=
0,25 para dois planos de admissdo

Analisando a relagdo acima poderiamos dizer que o mancal
aerostatico pode transformar 20 a 25 porcento da queda de pressio
disponivel em capacidade de carga util.

Apds a determinacéo destes parimetros deve se selecionar a largura
do filme de ar C.

Esta dimensdo provavelmente é uma das mais criticas e deve ser a
menor possivel uma vés que a vazio ¢ proporcional ao cubo de C e a
rigidez é inversamente proporcional a C,

A experiéncia sugere que C/R=0,5. 107 a 1,0 .107 onde R (=0,5D)
¢ o didmetro do eixo ou C=0,5%107 2 2*%10> polegadas para mancais
axiais .

Com esses dados em médos é possivel agora recorrer aos abacos para
encontrar pardmetros referentes ao mancal.

Inicialmente, procura se o valor de As referente a méaxima rigidez
admensional K . Com esse valor em méos pode se encontrar os valores
de Ka, G, w (para mancais axiais) e, a partir desses adimensionais
calcula se a rigidez aridez angular, a vazio ¢ a carga dos mancais .

Para mancais radiais , a capacidade de carga pode ser dada a partir
da relagéo
e= W/CK

e= excentricidade

19



W= carga
C= espessura do filme
K=nigidez

Caso seja necessario encontrar o valor da pressdo do gas (pc) entre o
orificio e o filme de ar basta se dividir G por A£ encontrando o valor de
G1 e entrar com esse valor no dbaco que relaciona G1 e pc/ps para, a
partir dai , obter o valor de pc.

Para determinar o numero n de furos , o raio do orificio e o diametro d

do rebaixo deve se usar a definicdo de As obtendo assim:
(na")(1+8%) =P, C*/(6u(RT)?)A;  para orificio com rebaixo

nd=(P,C*/(6p(RT)"*)A, para orificio sem rebaixo

Para encontrarmos os valores de n , a e d (note que & = a*/Cd) use um
procedimento de tentativa ¢ erro assumindo inicialmente um valor de d
na faixa de 0,025 polegadas ¢ calculando £ ¢ D (lembre-se que & = Y%
InRy/Rie D=2Rc=2(Rgy Ri)“2 para mancais axiais) e , a partir dai,
calculando o valor de d/ED , entre na figura 5.3.19 e encontre o valor

minimo para n&..
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Mancais aerostiticos radiais e axiais (Powell)

Na metodologia de projeto apresentada por Purquerio (baseada em
Powell), projetam-se os mancais aerostaticos para suportarem a
maxima rigidez ou a maxima carga.

Estas caracteristicas dos mancais dependem do valor dos fatores de
pressdo Kg.

Para valores de Kg iguais a 0,8 tem-se a méxima rigidez (ver figura
4), enquanto para valores iguais a 0.4 tém-se a situagdo de maxima
carga.

Por essa metodologia encontram-se primeiramente, os valores de
vazdo, carga, pressdo de alimentagfo, didmetro e comprimento do
mancal conforme mostra a figura 1.

A partit dai dimensionam-se os orificios conforme mostram as

figuras de 5 a 13.
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Comparacio de diferentes métodos de projeto de mancais

aerostaticos com base em dados experimentais

Nesta secdio iremos apresentar resultados selecionados de um estudo
experimental realizado na Universidade de Southampton , Reino Unido
, para avaliar a precisdo de alguns métodos de projeto de mancais

aerostaticos publicados.

O equipamento de teste
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O equipamento para a coleta dos dados experimentais é mostrado
esquematicamente na figura a seguir.
1. Mancal a ser testado

2. Eixo

3. Mancais Auxiliares

4. Diafragmas

5. Cilindro de Carga

6. Mecanismo de Ajuste de Carga

7. Transdutor de Pressdo

8. Potenciémetro Linear

9. Sensores Capacitivos

10. Potenciémetro Angular

11, Transdutor de Pressdo do Cilindro de Carga

O eixo (2) ¢ sustentado por dois mancais auxiliares (3) auto - alinhantes
(4) . Os mancais a serem testados (1) s#o posicionados entre 0s mancais
auxiliares e sdo submetidos & carga aplicada por um cilindro de carga
(5) . Tal carga pode ser regulada por um mecanismo de ajuste (6).

As duas dreas (a) ¢ (b) do pistdo proporcionam duas faixas de ajuste de
carga : 0-150N e 0-1500N para uma pressdo de 0-690 kN/m®> . A
pressdo tanto de (a) quanto de (b) ¢ monitorada por um transdutor de
pressdo (11) cuja saida , juntamente com a saida de um dos sensores
capacitivos (9) montados em cada uma das extremidades do mancal a
ser testado, € registrada por um plotter de forma que , variando a
pressdo no cilindro de carga , é plotado um grafico carga x

exceniricidade.
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A pressdo no mancal , a posicdo axial e angular do eixo sdo
monitoradas, respectivamente por um transdutor de pressdo e por dois
potencidmetros , um linear (8) e outro angular (10) . As saidas destes

potenciémetros e deste transdutor também é conectada ao ploter.

Metodologias de Projeto Testadas Experimentalmente

Powell

Powell ~ fornece o valor do carregamento (coeficiente de
carregamento = W / [(Ps - Pa)D?] ) para valores da excentricidade € =
0,5 ¢ €=20,9 sugerindo o valor para o fator de pressio (Kg=1[Pd -

Pa] / [Ps - Pa] ) igual a 0,4 a fim de otimizar a capacidade de carga.
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S&o fornecidos também abacos para a combinagio apropriada dos
valores da folga (h) , didmetro dos orificios (d) , razo
comprimento/didmetro (L/D) do mancal , namero de orificios (n) e
pressdo de alimentagfo (Ps) para valores de Kg iguais a 0,4 (mdximo

carregamento) e 0,8 (maxima rigidez). A precisio das previsdes para
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valores de carga, conforme deduzido experimentalmente, situam-se
entre -10% e 20% para valores de Kg entre 0,4 ¢ 0,8 .

Os valores de carga previstos para um determinado tipo de
compensagdo , numero de orificios e razio comprimento didmetro
(L/D) sdio dados como sendo diretamente proporcionais a (Ps - Pa) e
D%

CL=W/[(Ps - Pa) D]

M.T.1

A metodologia desenvolvida pelo M.T.I. sugere um valor minimo
para n (nitmero de orificios) dependendo dos vares de L/D , D e dg se
o mancal for de orificios com rebaixo (pocketed orifices) ou d se o
mancal for de orificios sem rebaixo ( aunular orifices ). E feito, ainda,
um refinamento no célculo caso seja usada uma combinacdo de

mancais com orificios com e sem rebaixos.
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Annular Orifices Docketed Orifices

A capacidade de carga ¢ dada através de K ("rigidez admensional™)
plotada contra o pardmetro de alimentagfio A& (analogamente a0 Kg
usado por Powell) para uma dada razdo de pressdes Ps /Pa . Dessa
torma , para L/D fixo e para um tipo de compensagdo _ fixados e para n
sendo superior a um minimo sugerido, o valor méximo de K pode ser
obtido para um valor 6timo de A para diferentes _ pressdes de

alimentacg3o.

Ko CK/[(Ps - Pa)D?]
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Sugere-se que a capacidade de carga ¢ aproximadamente linear com

o deslocamento para valores de excentricidade () e do fator de

alimentacdo (A&) respectivamente entre 0,4 ¢ 0,5 e entre 0,1 ¢ 2

Resultados dos Testes e Comparacdo dos Métodos de Projeto
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5004- — — — — — Const.(Ref.4)
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E xperimental
400+
300+

200+
C=249um
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100 + AT = 01’2
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0 ¢ $ + & {
0 0,25 a5 075 1
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Ensaios com mancal esférico

Ensaios apresentados por Purquerio:

Esquemas de montagem

Re!o’q:o
Comparador
T MANCAL /
T A, @/ A kcowmzsscn'@«

|
VATV v v s A A iy e e REGULADOR OF
‘ PRESSAO

A montagem acima foi feita num primeiro ensaio que consistiu
simplesmente na verificagdio das caracteristicas do mancal adotadas no
caleulo e na demonstragio do baixo atrito da pelicula de ar.

A montagem abaixo , por sua vez, representa o que foi feito nos ensaios
subseqilentes em que o objetivo era levantar dados sobre o
comportamento da rigidez e capacidade de carga do mancal , em

fun¢do da pressdo de alimentacdo.



L/5
f
Pesos
Comparador Calibrodos
i | /Borru Rigida
C ~ !
l Apoto Fuixo
"MANCAL
VAP AV (i i i e G el o (7 7 5 G (Y A S S o e
,.\' COMPRESSOR

Reguiador de

Pressdo

Eista dltima montagem consistiu em uma barra rigida horizontal
biapoiada de comprimento "L" com um apoio fixo e outro moével. A
posi¢do escolhida para o mancal , posi¢do invertida , foi a mais
adequada pois dessa forma as leituras no relégio comparador puderam
ser feitas diretamente sobre os deslocamentos da esfera .

Sobre a barra horizontal foram depositados pesos calibrados até um
maximo de 40 kg com incrementos de 5 kg a cada medida efetuada .
Para cada série de carregamentos , a pressdo era mantida constante
através do regulador de pressdo .

Dessa forma foram levantadas a curvas de rigidez do mancal para cada

valor da pressdo de alimentaggo.
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